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Unlocking the Abyss: A Dynamical Model for Deep-Sea Adventure
Safety and Rescue Strategies

In the ever-growing realm of adventure tourism, the exploration of sunken shipwrecks by riding
submersibles has emerged as an exciting experience and popular activity, which allows enthusiasts to
witness the silent beauty of maritime history beneath the waves. However, due to the complexity of the
ocean current and weak communication underwater, the event that a submersible loses contact with the
host ship under the sea continues, and positioning the missing submarine and carrying out rescue will
be difficult. Predicting the trajectory of the submarine and developing the best search strategy are
problems faced by both marine administrators and mathematicians. In order to handle this challenge, we
divide the problem into three key points and establish three models separately.
Model I: Based on the knowledge of the underwater environment, the current effect, seawater density,
and seafloor topography are three main points influencing submersible movement. We first utilize the
Autoregressive Integrated Moving Average (ARIMA) Time Series Model and ridge regression to fit
the three-dimensional continuous current and seawater density distribution. According to the dynamics
function of the submersible considering complex factors, we build a model to solve these equations
and predict the trajectory of the missing submersible. The prediction results are shown in Figure 6.
Furthermore, we analyze the uncertainty of the current. After randomly input time series, it has an average
uncertainty of 2.39%.
Model II: During the preparation stage, necessary search equipment for rescue must be deployed on the
host ship and rescue vessel. There are different indicators of various types of search equipment including:
equipment cost, maintenance cost, availability, usage, and readiness, which are firstly averagely processed
and quantified. Our model uses the objective functions of minimum total cost, availability, and preparation
time. Then, a Muti-Objective Optimization is established based on a Genetic Algorithm to obtain the
Pareto set of solutions for the host ship and rescue vessel, respectively. Then, we choose three optimal
results as different equipment allocations for the host ship and rescue vessel. The final results are shown
in Table 8.
Model III: To decide the search strategy, we rasterize the region into grids and estimate the dynamic
probability distribution based on our prediction results and the Poisson distribution function. Inspired
by Bayes’s theorem, we adjust the probability distribution according to the information obtained from the
previous search. Ultimately, we divide the search into many time intervals and accumulate the probability
of finding the submersible. The results of the accumulated probability are shown in Figure 10.

Additionally, we test the scalability and sensitivity of this model. Applying the model to another
tourist destination, the Caribbean Sea, the trajectory corresponds to the current trend in that sea area,
which means it has a fine scalability. Then, we change the time interval value in our model to test its
sensitivity. After calculation, the final probability change rate is less than 5.8% if the time interval change
rate is less than 10%. The results show that our model is not sensitive to changes in time intervals. Finally,
we formulate a memo to the Greek government to obtain official approval.

Keywords: Submersible Trajectory; Dynamical Analysis; Grid Analysis; Bayes Theorem; Sensitivity
Analysis
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1 Introduction

1.1 Problem Background
There have been 38 accidents involving submarines and submersibles since 2000, and one of them

was the “Titan implosion” last year [1]. Once an incident in deep water happens, an urgent international
search and rescue operation is about to begin. Greece-based company Maritime Cruises Mini-Submarines
(MCMS) manufactures submersibles for deep-sea explorations and wishes to provide tourists with the
chance to adventure the depths of the Ionian Sea and explore sunken shipwrecks. However, it is vital to
have safety procedures to cope with the possible risks underwater. Consequently, we are asked by MCMS
to design a four-step procedure for them.

1.2 Restatement of the Problem
To ensure security on board, a four-step safety procedure is modeled, including Locate, Prepare, Search,

and Extrapolate. After thorough background reading, each procedure can be formulated into a sub-problem
as follows:
• LOCATE:

Develop a predictive model for the submersible’s location over time. Identify uncertainties in pre-
dictions. Determine data the submersible can transmit to the host ship to reduce uncertainties. Specify
required equipment on the submersible for data transmission.
• PREPARE:

Recommend additional search equipment for the host ship, considering cost, availability, maintenance,
readiness, and usage factors. Also, outline the additional equipment a rescue vessel might need for
assistance.
• SEARCH:

Create a model integrating location predictions to suggest optimal deployment points and search
patterns for search equipment, minimizing the time to locate a lost submersible. Calculate the probability
of finding the submersible based on time and accumulated search results.
• EXTRAPOLATE:

To adapt the model for other tourist destinations like the Caribbean Sea, integrate region-specific data
such as currents, weather patterns, and underwater topography. For multiple submersibles in the same
vicinity, incorporate individual identifiers and update the prediction algorithm to manage simultaneous
movements.

1.3 Literature Review
The task consists of two main models to be constructed: the prediction model of the submersible path

and the search methodology of the rescue vessel. According to existing studies, predicting the submersible
tracks has two main methods: Neural Network Predictions [2] and Computational Dynamics Simulations
[3]. The neural Network-based Method uses a neural network (LSTM) to capture the disturbance like
effects of currents or geography, which has remarkable accuracy with the proper network. At the same
time, the computational and time costs are unavoidable. Computational Dynamics Simulations start from
essential physics and kinetics models, and the simulation runs simultaneously with happening situations.
Its accuracy relies heavily on the dynamical models and the formal information.



Team #2407038 Page 3

The underwater target search methods mainly include random search, geometry search, and heuristic
search. This task requires searching by probability based on the existing results and time, a heuristic
search method using prior knowledge of the target. Based on our findings, a few studies use mathematical
models to tackle this issue: Limited studies have addressed this issue with mathematical models. Yao et
al. applied expectation-maximization (EM) for static target search, but it is unsuitable for moving targets
[4]. In [5], Juan, Li et al. use the RRT algorithm and neural network to improve the exploration capability
in multiple-target search in a changing environment, but the search efficiency is relatively low.

1.4 Our Work
The task involves establishing a four-step procedure to ensure the safety of deep-sea exploration, which

mainly includes:
1. Based on the currents, seawater density, and seafloor geography of the Ionian Sea, a Trajectory

Prediction Model based on dynamics analysis is established.

2. Multi-Objective Optimization evaluates the rescue search equipment and then decides whether to be
installed on the host ship and rescue vessels.

3. Based on the location obtained from the Trajectory Prediction Model, we rasterize the search area
and construct the probability model from the search results and time.

4. Extrapolation of the model tests the transferability of situations like different oceans and multiple
submersibles lost.

In order to avoid complex descriptions and intuitively reflect our workflow, the flowchart is shown in
Figure 1.

Figure 1: Work Flow
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2 Assumptions
Before establishing a mathematical model for the motion trajectory of a defective submersible under

the sea, we make some assumptions to make the model easier to realize.

• Assumption 1: The changes in ocean currents are periodic.

Explanation: The periodic changes in ocean currents result from the combined effects of various
complex factors, including but not limited to wind, Earth’s rotation, and solar radiation.

• Assumption 2: The submersible’s weight and volume do not change after it loses contact with
the host ship. The size of the submersible is supposed to be 670 cm × 280 cm × 250 cm

Explanation: A submersible’s weight and volume will decide its gravity and buoyancy and further
influence the trajectory underwater. To simplify the model, we ignore the changes in these factors for a
defective submersible.

• Assumption 3: When a submersible breaks down and loses contact with the host ship, it will
lose the ability to provide propulsion and change its volume simultaneously.

Explanation: If the submersible still has propulsion, the operation of the driver after contact loss will
be unpredictable, which means the later position of the submersible will be unpredictable. Additionally, if
the submersible can still reach the water’s surface with its propulsion, discussing how to predict the motion
and carry out the rescue underwater is meaningless.

• Assumption 4: When a submersible breaks down and loses contact with the host ship, it is
always positioned on the sea floor or at some point of neutral buoyancy underwater.

Explanation: Since the purpose of a submersible is to allow tourists to visit underwater landscapes and
search for underwater boats, it will be suspended at some position under the sea or just stop on the seabed.
Then, we can suppose that the submersible is still when accidents happen.

• Assumption 5: When a rescue vessel searches for the missing submersible, it can detect
submersible as long as they are in the same latitude and longitude coordinates.

Explanation: Due to the complex environment and terrain, the rescue vessel may miss the submersible
even though they are close enough. The missing probability is low and unpredicted, so we view it as 0,
which means the rescue vessel can find the target under the water.

3 Notations

Table 1: Notations Used in this Paper
Symbol Definition Symbol Definition

𝑌𝑡 Predicted ocean current velocity vector 𝑓𝐶 (𝑥) Cost objection function
𝑅𝑡 Residual sequence 𝐺𝑠 Grid size

𝐽 (𝜃) Ridge regression function 𝑣 Velocity
𝑀𝑆𝐸 (𝜃) Mean square error 𝑃 (𝜒 = 𝑘) The Poisson distribution

𝐸𝐶 Environmental coefficient 𝑝(𝐴) Probability of event A
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4 Model Preparation

4.1 Data Overview
The material does not provide direct data about the Ionian Sea we will research, so we collect some

important data about this region. According to our model, we collect the data about current velocity
distribution and seawater density distribution of the Ionian Sea. Owing to the large amount of data, we
choose to visualize the data for display instead of listing all of them.

4.2 Data Collection
Table 2: Data and Database Websites

Database Names Database Websites

Current https://data.marine.copernicus.eu/product/
Density https://www.ncei.noaa.gov/maps/grid-extract/

Geography of Seafloor https://download.gebco.net/

4.3 Data Preparation
4.3.1 Data Extraction

Considering the dataset used is a seven-dimensional dataset [1095 49 52 76 1 1 1 ], with dimensions
corresponding to time, depth, longitude, latitude, east-west direction speed, north-south direction speed,
and vertical speed, respectively. The initial step involves flattening the data and transforming it into a
one-dimensional vector indexed by time. Fixing the parameters of depth, longitude, and latitude allows
obtaining a vector of ocean current speeds at a specific depth and location, indexed by time. Typically,
example data at 222.4752𝑚 deep, 37.083332◦ Latitude, 20.166677◦ Longitude is shown in Figure 2.
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Figure 2: Extracted Full Data From CMEMS

4.3.2 Conversion from longitude and latitude to distance

The data we collect all utilizes longitude and latitude as the coordinates to describe the distribution
of the current velocity and seawater density. While we will use the mechanical model to predict the
submersible’s motion, the parameters’ dimensions should be converted to the International System of Units
for calculation. Due to the slight change in longitude and latitude in the Ionian Sea region, we use the
arc distance along longitude and latitude between two points as the coordinate distance. The Spherical
Distance Calculation formula is shown in Equation 1.{

𝐿𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒𝐴𝑟𝑐 = 𝑅 · Δ𝜙
𝐿𝑜𝑛𝑔𝑡𝑖𝑡𝑢𝑑𝑒𝐴𝑟𝑐 = 𝑅 · cos 𝜙1 · 𝜆

(1)



Team #2407038 Page 6

5 Trajectory Prediction Model Based on Dynamics Analysis

5.1 Advanced Time Series Analysis: Delving Deep into Ocean Current Speed Data
Step 1: ARIMA Time Series Prediction Model Set-up
We employed an autoregressive integrated moving average (ARIMA) time series model [6] to predict

the conditions of ocean currents. This model provides predictions of changes in ocean currents over a
future period through mathematical modeling methods.

It is first necessary to check the stationarity of the data since the time series should be stationary. It can
be found that the series is not stationary, so the differencing operation, Equation 2, is used to transform it
into a stationary series.

Δ𝑑𝑌𝑡 = Δ(Δ𝑑−1𝑌𝑡) 𝑓 𝑜𝑟 (𝑑 = 1) (2)
simple differencing can be represented as Equation 3.

Δ𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1. (3)
The autoregressive part reflects the linear relationship between the current value and its past values.

For the 𝑝𝑡ℎ order autoregressive part, there is Equation 4.

𝐴𝑅(𝑝) : 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + . . . + 𝜙𝑝𝑌𝑡−𝑝 (4)
The moving average part reflects the linear relationship between the current forecasting error and past

observation errors. For the 𝑞𝑡ℎ order moving average part, there is Equation 5.

𝑀𝐴(𝑞) : 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + . . . + 𝜃𝑞𝜀𝑡−𝑞 (5)
Therefore, for the ARIMA model, let 𝑌𝑡 be the observed value of the time series at time 𝑡, and the

ARIMA model can be represented as Equation 6.

Δ𝑑𝑌𝑡 = 𝜇 +
𝑝∑︁
𝑖=1

𝜙𝑖Δ
𝑑𝑌𝑡−𝑖 +

𝑞∑︁
𝑗=1

𝜃 𝑗𝜀𝑡− 𝑗 + 𝜀𝑡 (6)

Where: Δ𝑑𝑌𝑡 denotes the series after (𝑑) differencing operations. 𝜇 is the constant term of the model.
𝜙𝑖 are the coefficients of the autoregressive terms, where 𝑖 = 1, . . . , 𝑝. 𝜃 𝑗 are the coefficients of the moving
average terms, where 𝑗 = 1, . . . , 𝑞. 𝜀𝑡 is the error term at time 𝑡, assumed to be a white noise series.

After multiple adjustments and testing, our ARIMA model’s forecasted results were compared with
actual data shown in Figure 3, revealing alignment in three comparison charts. Model validation involved
calculating and analyzing the residual series, showcasing even scattering around the zero line without
discernible trends or patterns. In conclusion, the ARIMA model performs well predicting ocean current
changes, supported by a stationary distribution and random residual series. Due to inherent model
limitations, continuous monitoring and adjustments based on new data are emphasized.
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Step 2: Quantifying Uncertainty Using Monte Carlo Method
To compute this error, we utilized the Monte Carlo method. The Monte Carlo method is a numerical

computation technique based on random sampling.

• Generate Random Input Time Series

Random Input Generation: First, generate a series of random input time series, shown in Equation 7,
which should reflect the potential fluctuations of natural variables, thereby being used to generate different
ocean current velocity prediction scenarios.

𝑋𝑡 ∼ 𝑁 (𝜇, 𝜎2) (7)
where, 𝑡 = 1, 2, ..., 𝑇 represents the time points in the time series.

• Ocean Current Velocity Vector Sequence Prediction

Model Prediction: Input each randomly generated time series into the pre-established and fitted ARIMA
model. The model will output a series of predicted ocean current velocity vector sequences for each input
series, shown in Equation 8.

𝑌𝑡 = 𝐴𝑅𝐼𝑀𝐴(𝑋𝑡) (8)
Here, 𝐴𝑅𝐼𝑀𝐴(𝑋𝑡) represents the ARIMA model’s prediction function given the input 𝑋𝑡 .

• Evaluation of Uncertainty

Uncertainty Measurement: Calculate the ratio of each residual item to each actual velocity item for
each set of residual series, which can be obtained by comparing the predicted ocean current velocity vector
series with the actual observed ocean current velocity series, shown in Equation 9.

𝑅𝑡 =
|𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 |

|𝐴𝑐𝑡𝑢𝑎𝑙𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 | =
|𝑌𝑡 − 𝑌𝑡 |
|𝑌𝑡 |

(9)

This method emphasizes the maximum relative error, Equation 10, highlighting the degree of deviation
between the prediction results and actual conditions in the worst-case scenario. The ratio series is shown
in Figure 4.

𝑈 = max 𝑅𝑡 (10)
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Figure 4: Uncertainty Series in Test-set
• Calculation of Average Uncertainty

Average Uncertainty: After completing the prediction and uncertainty evaluation of all random se-
quences, calculate the average of all uncertainty values. This average provides a quantified indicator of the
model’s average level of uncertainty under various random inputs shown in Equation 11.

𝑈𝑎𝑣𝑔 =
1
𝑁

𝑁∑︁
𝑖=1

𝑈 (𝑖) = 2.39% (11)
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5.2 Continuous Current Speed Distribution Regression Model
We use ridge regression in our model to build a function between a point’s coordinate and current speed

value. The objective function for ridge regression to minimize is shown as Equation 12.

𝐽 (𝜃) = 𝑀𝑆𝐸 (𝜃) +
𝑛∑︁
𝑗=1

𝜃2
𝑗 (12)

Where 𝐽 (𝜃) is the objective function to minimize, 𝑀𝑆𝐸 (𝜃) is the mean square error, which will be
discussed later, 𝛼 is the regularization parameter used to control the influence of the regularization, and 𝜃 𝑗
is named as 𝐿2 norm, which is a parameter to optimize. To further explain this algorithm, the mean square
error function can be written as Equation 13.

𝑀𝑆𝐸 (𝜃) = 1
𝑚

𝑚∑︁
𝑖=1

(ℎ𝜃 (𝑥 (𝑖)) − 𝑦 (𝑖))2 (13)

Where m is the sampling number, ℎ𝜃 (𝑥 (𝑖)) represents the predicted value of the model for the 𝑖𝑡ℎ sample,
and 𝑦 (𝑖) is the actual value of the 𝑖𝑡ℎ sample.

Though the principle of ridge regression is complex, Matlab provides a complete function to practice
ridge regression, which is known as ridge (𝑦, 𝑋, 𝜆), where 𝑦 is the target value for model fitting, 𝑋 is
the input matrix which contains all of the sampling points, and 𝜆 is the regularization parameter, which
controls the strength of regularization terms. As a three-dimensional vector, the algorithm is operated three
times to obtain the current speed at a point in three directions. Since the regression results contain a large
range, so we only select some of the points in the range to display, and the result is shown in Table 3.

Table 3: Predicted Current Speed at Some Points
Latitude Longitude Depth x-velocity y-velocity z-velocity
36.583 21.833 -15.41 -0.2405 0.2687 -2.767×10−5

37.917 19.333 -114.05 0.0344 0.0752 6.088×10−6

36.167 22.167 -294.45 -0.2307 -0.12 2.459×10−5

38.917 20.333 -923.26 0.1661 -0.0983 1.556×10−4

36.583 17.333 -3181.27 0.1162 0.1366 -6.264×10−6

... ... ... ... ... ...
Note: The 𝑥 coordinate and 𝑦 coordinate are all changed back to latitude and longitude values in the table. All quantities in the table use the International

System of Units.

From the table, it is easy to see that the 𝑥-component and 𝑦-component of the current speed are much
higher than the 𝑧-component, which corresponds to the characteristic of the ocean current. The same
method can be used to obtain the continuous seawater density distribution. Since the process is generally
the same, we only provide the predicted seawater density value at some points in Table 4.

Table 4: Predicted Seawater Density at Some Points
Latitude Longitude Depth Seawater Density
36.169 19.673 -3157 1033.76
36.573 21.852 -1605 1029.77
37.056 19.223 -3433 1034.55
37.885 20.852 -127 1025.41
38.381 19.585 -2664 1032.26

... ... ... ...
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5.3 Dynamical Model based on Newtonian mechanics
According to the assumption, the defective submersible will lose propulsion simultaneously when it

loses contact with the host ship. So, the submersible will move only under external forces. According
to Oceanography and Physics knowledge, the four main forces that should be considered are gravity,
buoyancy, resistance, and ocean current force. The force situation of the submersible is shown in Figure
5.

Figure 5: Force situation of a submersible
This graph shows the effects of multiple factors on submersibles. Before the dynamical model is

constructed, we first analyze these forces. Equation 14 calculate the Gravity.

𝐹𝐺 = 𝑚𝑔 (14)

Where 𝐹𝐺 is the gravity and 𝑚 is the mass of the submersible. According to the assumption, the mass
of the submersible is a fixed value. So 𝐹𝐺 will always be a fixed value.

In Equation 15, 𝐹𝐵 is the buoyancy, 𝜌 is the density of the seawater at the current position of the
submersible, and𝑉 is the volume of the submersible, which is also a fixed value according to the assumption.
So, the buoyancy of the submersible only depends on the local density.

𝐹𝐵 = 𝜌𝑔𝑉 (15)

In Equation 16, 𝐹𝑅 is the resistance, 𝜌 is still the density of the seawater 𝑣 is the current velocity of the
submersible, 𝐶𝑑 is the resistance coefficient and 𝐴 represents the upstream area of the submersible. It is
easy to know that 𝐶𝑑 and 𝐴 can be viewed as constant values and 𝜌 and 𝑣 will change with the movement
of the submersible.

𝐹𝑅 =
1
2
𝜌𝑣2𝐶𝑑𝐴 (16)

In Equation 17, ®𝑣𝑠 represents the velocity of the submersible related to the current, and ®𝑣𝑐 represents
the velocity of the current related to Earth. This formula shows that the velocity of the current can be
directly added to the submersible’s velocity because the current’s velocity is known when the position of
the submersible is known.

®𝑣 = ®𝑣𝑠 + ®𝑣𝑐 (17)
Equations 18 can be constructed according to Newton’s Second Law and the current speed predicted

model, where 𝜙 represents the angle between the resistance and the horizontal plane and 𝜃 represents the
angle between the projection of resistance on the horizontal plane and the x-axis. According to the previous
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discussion, the 𝐹𝐵 and 𝑣 will change according to the current position, and the exact value of 𝐹𝐵 and 𝑣 can
be predicted from the model established in 5.2.

𝑚
𝑑𝑣𝑥
𝑑𝑡

= −𝐹𝑅 cos 𝜙 cos 𝜃
𝑚

𝑑𝑣𝑦
𝑑𝑡

= −𝐹𝑅 cos 𝜙 cos 𝜃
𝑚

𝑑𝑣𝑧
𝑑𝑡

= 𝐹𝐵 − 𝐹𝐺 + 𝐹𝑅 sin 𝜙

(18)

Then, we consider the seafloor topography of the Ionian Sea and set limits to ensure the submersible
will not move down below the seafloor. After the dynamics equations are prepared, we use the Python
package to solve the equations. Based on assumptions, the initial state of the defective submersible will be
somewhere in the Ionian Sea region with v=0. Figure 6 shows the trajectory obtained from the code.

Figure 6: Trajectory of a Submersible Losing Contact
The starting point is random, which in this simulation is (9264, 6207,−3767). After calculation, the

position of the submersible we predict after 3 hour is (10342, 5554,−4062). The complete trajectory of
the point is shown, which means we can obtain the predicted position of the submersible at any time after
calculation. In this simulation, we expect that the submersible will gradually decline along the trajectory
curve, and the trajectory is irregular, resulting from periodic current and seawater density. This trajectory
model provides us with information for future search and rescue work.

5.4 Discussion on Key Equipment and Technologies
To effectively reduce the uncertainties these factors introduce, the submersible needs to regularly report

a series of critical data to the mother ship. This data’s accurate collection and transmission are crucial for
optimizing the prediction model. Hence, the submersible needs to be equipped with the following three
kinds of advanced monitoring equipment.
(i) Ocean current detection and seawater condition monitoring equipment
• Acoustic Doppler Current Profiler (ADCP):

This instrument measures the echoes from particles in the seawater at different depths from the
submersible.
• CTD sensors:

CTD stands for Conductivity, Temperature, and Depth, the three fundamental oceanography parameters.
(ii) Dynamics and External Resistance Monitoring System
•Inertial Navigation System (INS):
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By measuring acceleration and angular velocity, INS provides the submersible with accurate informa-
tion on position, velocity, and attitude.
(iii) Communication and Data Logging Equipment
• Underwater Acoustic Communication Devices:

In the underwater environment, submersibles rely on acoustic communication to exchange data with
support ships or other submersibles.
•Data Loggers:

Used for long-term storage of collected oceanographic data, submersible motion data, and environ-
mental monitoring data.
•Satellite Communication Systems (used during surface activities):

When the surfaces, the satellite communication equipment is enabled to transmit data collected during
the dive and receive new instructions from the research team.

By equipping these advanced devices, the submersible can regularly obtain and report critical infor-
mation to the mother ship, including ocean current data, seawater conditions, dynamics parameters, and
resistance data. This significantly reduces uncertainty and enhances the accuracy of trajectory predictions.
Such configuration optimizes the prediction model’s performance, effectively reducing factors that con-
tribute to uncertainty in submersible position predictions, thereby ensuring the safe and effective operation
of the submersible.

6 Comprehensive Equipment Allocation Optimization Model
In facing the arduous task of marine search and rescue, rapid and effective search and rescue operations

are crucial for improving survival rates. The rational allocation of search and rescue equipment carried by
the main ship and rescue boats is significant. This necessitates a multi-objective optimization model that
comprehensively considers costs, equipment availability, and readiness to aid decision-making. Below, we
will introduce CEAOM.

6.1 Preliminary Research
Detailed investigations were conducted on several types of key equipment, shown in Table 5, including

echo sounders, side scan sonars, pinger locators, magnetometers, and optical imaging systems. These
devices play an indispensable role in marine search and rescue missions.

Table 5: Key Equipment

Echo Sounder Side Scan
Sonar Pinger Locators Magnetometer Optical Imaging

System
Echologger
EU400 Klein 3000 RJE International

PL-600
W Fishers
Proton 4

SeaViewer
SVS-650

Kongsberg
EA 640 SonarMite Teledyne Benthos

UDB-9000
Geometrics
G-882

Ocean Systems
Inc. OASIS

Furuno
FE800 Edgetech 6205 Marine Magnetics

SeaSPY
Kongsberg
OE14-502
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6.2 Model Construction
6.2.1 Parameter Introduction

In this multi-objective optimization model, the focus is on five parameters: equipment cost, annual
maintenance cost, availability, usage, and readiness. Below is the definition of each parameter and an
introduction to their calculation methods.

• Equipment Cost (C):

Reflects the initial investment required to purchase various search equipment.

• Annual Maintenance Cost (M):

Represents the annual expense required to ensure that the equipment maintains optimal working
conditions within the specified service life.

• Availability (A):

Considers factors such as water temperature, depth, currents, noise, and interference to quantify the
equipment’s operational performance under various conditions.
Calculation of Availability:

The calculation principles for coefficients reflecting the impact of various environmental factors on
sound wave propagation can be summarized into a unified equation as Equation 19.

Environmental Coefficient (𝐸𝐶) = Range
Sensitivity

(19)

Here, the Environmental Coefficient (𝐸𝐶) could be the Water Temperature Coefficient (𝑊𝑇𝐶), Water
Depth Coefficient (𝑊𝐷𝐶), Water Current Coefficient (𝑊𝐶𝐶), Noise Coefficient (𝑁𝐶), or Interference
Coefficient (𝐼𝐶), depending on the specific application context and metric being measured.

Range denotes the working range of the environmental variable (water temperature, water depth, water
current, noise, or interference). This reflects the product’s adaptability or performance variation range
under different conditions.

Sensitivity refers to the degree to which the product’s performance changes in response to changes in
the environmental variable.

In summary, the availability index can be calculated as Equation 20.

Availability Index = 𝑊𝑇𝐶 ×𝑊𝐷𝐶 ×𝑊𝐶𝐶 × 𝑁𝐶 × 𝐼𝐶 (20)

Usage (U):
The equipment’s usage time within a year reflects the actual workload of the equipment.
Readiness (R):
The preparation time required before each use directly affects the response speed of the mission.
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6.2.2 Data Processing

We first define each data set as a collection of a series of observed values, shown in Equation 21.
Suppose we have surveyed 𝑘 different products for each type of equipment, each with its corresponding
cost, availability, maintenance cost, usage, and readiness. Let 𝑃𝑖 represent the average value of the
parameter for equipment type 𝑖. 𝑃𝑖 𝑗 is the observed value of the parameter for the 𝑗 𝑡ℎ product of equipment
type 𝑖. 𝑘𝑖 is the number of products surveyed for equipment type 𝑖.

𝑃𝑖 =
1
𝑘𝑖

𝑘𝑖∑︁
𝑗=1

𝑃𝑖 𝑗 (21)

The final data processing results are shown in Table 6, where ES stands for Echo Sounder, SSS stands
for Side Scan Sonar, PL stands for Pinger Locators, MM stands for Magnetometer, and OI stands for
Optical Imaging.

Table 6: Equipment Data
ES SSS PL MM OI

C 15000 85000 15000 50000 50000
A 4291667 1206667 1580000 633333 1293333
M 5500 1500 500 2500 5000
R 8 4 1.1 1.2 0.5
U 480 960 108 300 369

6.2.3 Objective Function

Set the objective function to minimize total cost, maximize equipment availability, and minimize
preparation time.

(i) Cost Minimization
This includes the equipment’s initial purchase and maintenance costs, which are related to the frequency

of use. The specific expression is Equation 22.

𝑓𝐶 (𝑥) =
𝑛∑︁
𝑖=1

(
𝐶𝑖 · 𝑥𝑖 +

𝑀𝑖

𝑈𝑖

· 𝑥𝑖
)

(22)

This formula considers the direct cost 𝐶𝑖 of purchasing equipment 𝑥𝑖 and the annual maintenance cost
𝑀𝑖 allocated according to the usage rate 𝑈𝑖. Here, 𝑥𝑖 represents the decision variable, whether or not to
purchase the 𝑖𝑡ℎ type of equipment.

(ii)Availability Maximization
Availability indicates the effective working capacity of equipment under specific conditions. The

mathematical expression is Equation 23.

𝑓𝐴 (𝑥) = −
𝑛∑︁
𝑖=1

(𝐴𝑖 · 𝑥𝑖) (23)

The negative sign indicates it is a maximization problem. By maximizing 𝐴𝑖 · 𝑥𝑖 (i.e., the availability
of the chosen equipment), the model ensures that the equipment configuration is efficient and adaptable to
various operational environments.

(iii)Preparation Time Minimization
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The specific expression is Equation 24.

𝑓𝑅 (𝑥) = max(𝑅𝑖 · 𝑥𝑖) (24)

Here, 𝑅𝑖 represents the preparation time for the equipment from the decision to use it to its readiness
for operation. 𝑥𝑖 represents the quantity of the 𝑖𝑡ℎ type of equipment, and 𝑛 is the number of types of
equipment.

6.3 Genetic Algorithm for Multi-objective Optimization
The model employs a genetic algorithm for multi-objective optimization, seeking the optimal balance

among cost, availability, and readiness. Ultimately generating a series of solutions that form a Pareto Front
shown in Figure 7.

Figure 7: Solutions in Pareto Front
Since the quantity of equipment can only be integers, further processing of the results to eliminate

duplicate schemes yields in Table 7.

Table 7: Optimization Results
ES SSS PL MM OI Readiness Availability Cost
0 0 1 0 0 1.1 1580000 15000
0 0 0 1 0 1.2 633333 50000
0 0 0 0 1 0.5 1293333 50000
0 0 1 0 1 1.1 2873333 65000
1 0 1 0 1 8 7165000 80000
0 1 1 0 0 4 2786667 100000
1 1 1 0 0 8 7078334 115000
1 0 1 1 1 8 7798333 130000
0 1 1 0 1 4 4080000 150000
1 1 1 0 1 8 8371667 165000
0 1 0 1 1 4 3133333 185000
1 1 1 1 1 8 9005000 215000

6.4 Results and Analysis
Ultimately, we selected four matching schemes, divided into three categories, to achieve the deployment

of the main ship and rescue boats. As shown in Table 8 below. Based on the deployment analysis of the
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Table 8: Four Possible Choices
ES SSS PL MM OI Readiness Availability Cost

Scheme 1 1 1 1 1 1 8 9005000 215000
Scheme 2 0 0 0 0 1 0.5 1293333 50000
Scheme 3 0 0 1 0 1 1.1 2873333 65000
Scheme 4 0 1 1 0 1 4 4080000 150000

results table and a detailed consideration of the characteristics of each scheme, we can derive the following
detailed strategies and deployment plans.
Main Ship (Optimum Performance Scheme) - Scheme 1:

As the option with the best performance and the highest cost, the main ship leverages its large volume
and sufficient preparation time to equip the most advanced search and rescue equipment. Its role extends
beyond search and rescue to serve as a command and coordination center.
Primary Rescue Boats (Rapid Response Scheme) - Schemes 2 and 3:

The primary rescue boats emphasize rapid response capability. Their readiness is lower, allowing
for quick preparation and dispatch to the accident area for preliminary search and rescue shortly after an
incident occurs.
Intermediate Rescue Boat (Balanced Performance Scheme) - Scheme 4:

The intermediate rescue boat balances readiness, cost, and performance. The intermediate rescue boat
has a slightly longer preparation time than the primary rescue boats. Still, once deployed, it is equipped
with more advanced search and rescue equipment and technology, significantly enhancing its search and
rescue capabilities.

6.5 Conclusion
This 1 + 𝑛 rescue scheme not only improves the response speed and efficiency of rescue operations

but also strengthens the adaptability to rescue needs under different maritime conditions and situations.
Moreover, this strategy ensures efficient, precise search and rescue actions, providing quicker and more
effective rescue services for those trapped in maritime emergencies.

7 Grid Probability Search Technique based on Poisson Distribution

7.1 Regional Rasterization
In a real-world deep water search, rescue vessels conduct operations on the ocean surface using search

equipment like sonar to detect aiming objectives. Therefore, the search area can be treated as a surface.
Before the accident, the lost submersible will send its last information to the host ship, and the rescue

vessels are then dispatched to the mission by analyzing the loss data. Apart from the location, the quality
of a search is measured through an effective examination of the search area. Systematic inspection of the
search area is achieved by following a predefined pattern tailored to the specific conditions of the search.
According to Salvage Manual [7], deep ocean searches have four proven effective and practical search
patterns: Parallel Grid Search, Constant Range Search, “Z” search, and ROV Box Search.

Parallel Grid Search is the most commonly used and effective search pattern in modern rescue missions,
shown in Figure 8(a). Consequently, our model will build upon this search pattern.
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(a) Parallel Grid Search (b) Search Grid
*The reasonable range of line spacing is generally between 0.5 and 2 times the target size, the reasonable range of Swath Width is generally between 0.5 and 2

times the target size, and the reasonable range of range overlap is generally between 10% and 30%.

Figure 8: Searching Pattern of the Rescue Vessel
With the help of loss data and Parallel Grid Search, search probability analysis can be determined by

applying a grid model that rasterizes the search area into smaller cells shown in Figure 8(b). Each cell
is assigned a probability percentage indicating the likelihood of the target being located within that cell.
Therefore, any point’s grid label 𝑁 can be expressed as Equation 25.

𝑁 = 𝐼𝑁𝑇 ( 𝑥

𝐺𝑠

) + 𝑀 × 𝐼𝑁𝑇 ( 𝑦

𝐺𝑠

) (25)

Where (𝑥, 𝑦) is the coordinate of a potential place, the abscissa 𝑥 represents the longitude and the
ordinate 𝑦 represents the latitude, 𝐺𝑠 is the grid size, 𝑀 =

𝑥𝑚𝑎𝑥

𝐺𝑠
, 𝑥𝑚𝑎𝑥 is the maximum length of the

horizontal axis. Furthermore, the grid center position coordinates can be obtained by Equation 26.{
𝑥𝐺 = (𝑁%𝑀) · 𝐺𝑠 + 𝐺𝑠

2
𝑦𝐺 = 𝐼𝑁𝑇 (𝑁/𝑀) + 𝐺𝑠

2
(26)

In the area of the Mediterranean, the most prevalent rescue vessel model operating is USNS Grasp
(T-ARS 51) [8]. According to its manual, this vessel model has a speed of 25 knots. Known the lost
submersible size was 670 cm × 280 cm × 250 cm, other search parameters can be determined below:
Swath Width: 2× 250𝑐𝑚 = 5𝑚 Overlap: 20% Velocity: 25× 1.852 = 46𝑘𝑚/ℎ. Assuming a square search
area with 30 min search time (t) using Parallel Grid Search, the grid size can be determined using Equation
27.

𝐺𝑠 =
𝑣 × 𝑡

𝑇𝑢𝑟𝑛𝑠
= (𝑆𝑊) × 𝑇𝑢𝑟𝑛𝑠 − (𝑆𝑊 ×𝑂𝑉) × (𝑇𝑢𝑟𝑛𝑠 − 1) (27)

Where SW stands for Swath Width, OV stands for Overlap. Therefore, an approximate 300m × 300m
grid model is established for regional rasterization.

7.2 Poisson Probability Distribution
Based on the discussion in 7.1, we have divided the rescue region into several regions. Then, we

hope to find the probability distribution of these regions, which means the probability of finding a missing
submersible in each region. According to the model built in 5, we can suppose that the submersible is
most likely to be in the grid corresponding to the coordinates we predict. The farther the coordinates are
from the central grid, the lower the probability of finding the ship. To describe the discrete probability
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distribution with such a characteristic, we choose to use the Poisson distribution. The Poisson distribution
function is shown as Equation 28.

𝑃 (𝜒 = 𝑘) = 𝑒−𝜆 · 𝜆𝑘

𝑘!
, 𝑘 ∈ 𝑁 (28)

Where 𝜆 is called the intensity parameter, describing the intensity of the event occurrence, a higher 𝜆
means the Poisson distribution has a larger probability on bigger k values.

To compare the finding probability of the grid near the central grid, we use the Manhattan distance
as the reference. The Manhattan distance calculates the sum of the separate differences in horizontal and
vertical coordinates between two points, which can be described as Equation 29.

𝑑 = |𝑥2 − 𝑥1 | + |𝑦2 − 𝑦1 | (29)

The value of the distance will correspond to the 𝑘 in the Poisson distribution function. For example, if
the distance between a grid and the central grid, the probability that we can find the missing submersible
in this grid is as Equation 30.

𝑃 𝑓 = 𝑃 (𝜒 = 4) · 1
𝑁4

(30)

Where 𝑁4 represents the total number of grids with a distance to the central grid of 4. As time flows,
the position of the submersible becomes more difficult to predict due to the uncertainty of ocean currents
and seawater density, so the probability of the submersible in the central grid will gradually decrease.
Assume that the ratio of the probability equals the ratio of the time. Then we can derive Equation 31.

𝜆 = 𝑚 + ln
𝑡

𝑡0
(31)

Where 𝑡0 represents the minimum time for the rescue vessel to prepare and arrive at the searching
destination. At the same time, m is a constant that will influence the initial probability of a successful
search in the central grid. We suppose 𝑡0 is a constant value, which means the vessels’ preparation time is
the same.

7.3 Probability Calculation Based on Bayesian Theory
Since we have calculated the size of each grid in line with the maximum search competence of a rescue

vessel, we can divide time into multiple time intervals as shown in Equation 32.

[𝑡0 + 𝑛 · 𝑡𝑖𝑛𝑡𝑒𝑟 , 𝑡0 + (𝑛 + 1) · 𝑡𝑖𝑛𝑡𝑒𝑟) (32)

Where 𝑡0 is still the minimum time for the rescue vessel to prepare and 𝑡𝑖𝑛𝑡𝑒𝑟 represents the minimum
time for one vessel to effectively search for one place, which is 30 minutes in our example.

According to 7.2, we can use the following principle to deploy our rescue vessels. For a single ship,
it will search for the grid range with the highest probability at the beginning of a time interval, and it will
not change the searching grid until the beginning of the next time interval. Since many vessels can be
deployed simultaneously to increase efficiency and strive for more rescue time, they will be deployed in
different grids with high probabilities at the beginning of each time interval. Due to the small distances
between different regions, the time to move from one grid to another can be ignored compared with the
search path length. The process is shown in Figure 9.
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Figure 9: Searching Strategy Based on Probability
In this figure, the yellow depth represents the size of the probability we predict for this area, and the

searching grid is chosen based on the probability of a single rescue vessel. In the next time interval, the
predicted position of the submersible may move to the next central grid, which becomes our next search
region.

Another important design is that we will not search for the same regions for a second time, which are
the red grids in Figure 9. The reason for this strategy is that the average current speed is around 0.12𝑚/𝑠, so
for the time interval of 30 minutes, the movement distance of the submersible will be less than 𝑣𝑡 = 216𝑚.
Considering the direction of the current and resistance effect, the real moving distance in this period will
usually be far less than 216 meters, which is smaller than the size of a grid. It means that the submersible
only has a small probability of occurring in one grid after it has been searched completely. So, we tend to
expand the search range instead of exploring one region repeatedly to ‘wait’ for the submersible to come
out. This means we suppose that the probability of finding the submersible in the grid we have searched is
0. Then, Bayes’s theorem, Equation 33, should be applied to transform the prior probability distribution
to the posterior probability distribution.

𝑝 (𝐴|𝐵) = 𝑝 (𝐵 |𝐴) · 𝑝 (𝐴)
𝑝 (𝐵) (33)

Where 𝑝(𝐴) is called the prior probability and 𝑝(𝐴|𝐵) is called the posterior probability. In this
problem, the prior probability is the Poisson probability, and the posterior probability is the adjusted
probability because some regions do not contain the missing submersible. Based on the Poisson distribution
function, 𝑝(𝐴) can be written as the expression as Equation 34.

𝑝 (𝐴) = 𝑒−𝜆𝑡𝜆𝑡
𝑟

𝑟!
(34)

Where 𝑟 is the Manhattan distance between the calculated grid to the current central grid and 𝜆𝑡 is the
intensity parameter corresponding to the beginning of the current time interval. Furthermore, event A, in
which the submersible is in one grid, is the subset of event B, in which the submersible is not in all the
searched areas, which means 𝑝(𝐵 |𝐴) in this problem equals 1. Then, the final posterior probability can be
simplified as Equation 35.

𝑝 (𝐴|𝐵) = 𝑒−𝜆𝑡𝜆𝑡
𝑟

𝑟! · 𝑝 (𝐵) (35)

Where 𝑝(𝐵) is the total prior probability of all searched grids. It is easy to learn that 𝑝(𝐵) tends to
decrease as more and more regions have been sought.
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7.4 Results and Analysis
To measure the efficiency of search action, we can draw the accumulated probability of discovering the

submersible with respect to time. Since we assume that the probability of a submersible in one region is
uniformly distributed, the plot should be a line chart, and the projection length of each line segment on the
t-axis is equal to the time interval length.

We randomly select a missing point in the sea and use Python to calculate the probability accumulation
results. Table 9 shows some key parameter settings.

Table 9: Key Parameters to calculate the probability
𝑡0 𝑡𝑖𝑛𝑡𝑒𝑟 m n

20 min 30 min 0.2 10

Where 𝑡0 is the minimum for the rescue vessel to prepare and arrive at the target position, 𝑡𝑖𝑛𝑡𝑒𝑟 is the
time interval for a vessel to search for a 𝑚 is a coefficient that influences the central grid probability, and 𝑛

is the number of rescue vessels. The accumulation probability in 5 hours or 50 hours is shown in Figure
10(a) and 10(b).

(a) Accumulated Probability in 5 Hours (b) Accumulated Probability in 50 Hours

Figure 10: Accumulated Probability of Finding a Submersible in 5 or 50 Hours

Comparing the two figures above, the accumulated finding probability is 0.5504 after the official search
and rescue operation starts for 5 hours and 0.7160 after the official search and rescue operation starts for
50 hours. This means we should grab the earliest opportunity to search for the submersible because the
possible range of the submersible will become larger as time passes. The growth speed of the accumulated
successful searching probability will sharply decrease.

Additionally, some parameters will influence the overall trend of the accumulated probability. For
example, a higher preparation time required will decrease the initial probability because the golden search
and rescue time has been wasted. The number of rescue vessels and the time interval to search for one
region are also significant. They will influence the total probability accumulated in a fixed period.

8 Expansion of the Model

8.1 Model Applied in Different Areas
To examine the model’s scalability, we attempt to apply it to the Caribbean Sea. Different seas mean

different current distributions and seafloor topographies. So, the trajectory of the missing submersible
will differ due to these factors. We utilize the current velocity data and seafloor topography data of the
Caribbean Sea to simulate the model in Part 5 again to predict the trajectory of a submersible without
propulsion. The trajectory is shown in Figure 11 as follows.
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Figure 11: Motion Trajectory of a Submersible in the Caribbean Sea
From the figure, it can be seen that the trajectory is mainly along the x-axis. According to [9], the ocean

current in the Caribbean Sea mainly flows from east to west, corresponding to our figure’s real situation.
This means the model can be applied to other sea areas and predict the movement trend of a submersible.

8.2 Rescue of Multiple Submersibles
When preparing for search and rescue operations, a worse case to consider is the simultaneous loss

of multiple submersibles. When this situation happens, we should consider how to allocate our limited
number of search and rescue vessels. We still base the strategy on the region with a higher probability. It
can be assumed that all of the missing submersibles are independent of each other, and The significance of
each is the same. Therefore, at the beginning of each time interval, we should calculate the total probability
of all the submersibles in each region, representing the expected number of s in this region. The remaining
model details do not need to be modified. Part 7 offers more information. If we consider three missing
submersibles simultaneously in a close area, the accumulated probability figure is shown in Figure 12.

Figure 12: Accumulated Probability of Three Submersibles Separately

From the figure, we can see the probability of successful search and rescue for each submersible is
lower than that when only one submersible is lost. This is because the total number of rescue vessels is
fixed, and they need to consider several submersibles. Theoretically, the farther the missing submersibles
are from each other, the lower the probability of each submersible being rescued because the probability
distribution overlap will be fewer.

Considering the probability of each submersible being rescued, the difference is obvious. This is due to
the strategic allocation of rescue prime time, making it difficult to achieve fairness for every submersible.
We can only make the model reach the global optimal solution. Detailed adjustment requires more complex
algorithms to realize.
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9 Sensitivity Analysis
In section 7.3, several parameters can influence the final accumulated probability. Among these

parameters, the time interval, the ability of the rescue vessel to search for a region with a certain area, is
significant because it decides how the vessel can take advantage of the golden search and rescue time to
explore more areas. Then, we choose this parameter to analyze its sensitivity. The percentage of parameter
change is shown in Table 10 below, and the analysis results are shown in the figures following the table.

Table 10: Test Time Interval Summary
Percentage change Standard -10% -5% 5% 10%

Time interval 30 min 27 min 28.5 min 31.5 min 33 min

Figure 13 indicates that whether the value of the time interval increases or decreases, the final accu-
mulated probability will not have a large difference. In other words, the model is not very sensitive to this
parameter.

Figure 13: Accumulated Probability and Deviation under Different Time Intervals

Ultimately, if the time interval increases by 10%, there will be a relatively large deviation compared
with the standard value. If the rescue vessel spends too much time searching for one grid, it is more likely
to waste the prime time and cause a lower probability of a successful rescue.
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Memo

To: Greek Government Regulatory Authorities
From: Team 2407038
Date: 2024.2.5

Approval for Maritime Cruises Mini-Submarines (MCMS) - Safety
Procedures and Models

I. Introduction
Maritime Cruises Mini-Submarines (MCMS) wishes to utilize their submersibles for tourist adventures

exploring the Ionian Sea’s depths, focusing on sunken shipwrecks. However, the ongoing exploration of
the deep sea is marked by frequent underwater accidents. To ensure possible accidents and fast response for
rescue, the objective is to design a model for location prediction, safety procedures, and rescue strategies
to address potential safety concerns, specifically loss of communication and mechanical defects.
II. Predictive Location Model

Locate - Trajectory Prediction Model Based on Dynamics Analysis
The submersible must carry essential equipment to collect crucial data during communication failure,

ensuring swift and accurate rescue operations to prevent potential tragedies. Considering factors including
ocean currents, resistance variations, seawater density, and seafloor geography, we have established a
dynamics-based trajectory prediction model. In the trajectory prediction model, they must consistently
relay crucial data to the mother ship to enhance precision and reduce model uncertainties. Therefore, they
should be equipped with advanced monitoring tools, including:

i) Equipment for ocean current detection and seawater condition monitoring (such as Acoustic Doppler
Current Profile and Conductivity, Temperature, and Depth (CTD) sensors);

ii) A Dynamics and External Resistance Monitoring System (Inertial Navigation System), and

iii) Communication and Data Logging Equipment (Underwater Acoustic Communication Devices, Data
Loggers, Satellite Communication Systems).

III. Search Equipment Recommendations
Prepare - Recommendation Based on Multi-Objective Optimization
Consideration is given to the costs associated with the search equipment’s availability, maintenance,

readiness, and usage. Five categories of search equipment are considered for both host ship and rescue
vessels. A reasonable equipment allocation plan is shown in the following Table .

ES SSS PL MM OI Cost
Host Ship ✓ ✓ ✓ ✓ ✓ 215000

Primary Rescue Boats I × × × × ✓ 50000
Primary Rescue Boats II × × ✓ × ✓ 65000

Intermediate Rescue Boats × ✓ ✓ × ✓ 150000
Note: ES stands for Echo Sounder, SSS stands for Side Scan Sonar, PL stands for

Pinger Locators, MM stands for Magnetometer, and OI stands for Optical Imaging.
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The implementation of this 1 + 𝑛 rescue scheme, through hierarchical organization and task allocation
optimization, not only improves the response speed and efficiency of rescue operations but also strengthens
the adaptability to rescue needs under different maritime conditions and situations. Ultimately, this strategy
ensures more efficient and precise search and rescue actions, providing quicker and more effective rescue
services for those trapped in maritime emergencies.
IV. Search Model

Search – Grid Probability Search Technique
When the submersible went lost, the following search strategy is established to minimize the search

time:

• Acquire the possible location using the Predictive Location Model

• Properly rasterize the search region

• Identify the Centre Search Grid and assign a probability to each grid

• Update the Centre Search Grid by time till the objective searched

V. Extrapolation for Other Destinations
Extrapolate - Expand the model to account for other tourist destinations.

1. Adaptation for Other Destinations:
The model can be used in various incident areas, incorporating regional variations in sea conditions
and topography. We try to transfer the model to the Caribbean Sea in this context. The ocean
currents in the Caribbean Sea predominantly move from east to west, aligning with our simulation
results, which indicates the model’s applicability to other sea areas and its capability to predict the
movement trends of submersibles.

2. Multiple Submersibles:
The model will update by overlaying each grid probability when the simultaneous loss of multiple s
is considered. Therefore, only small changes need to be made to our model to copy with multiple
submersible scenarios.

VI. Conclusion
The proposed safety procedures, predictive models, and equipment recommendations aim to ensure

the secure and efficient operation of MCMS submersibles. We request the Greek Government’s support
and approval for implementing these measures, emphasizing the importance of responsible and exciting
underwater tourism.

Thank you for your attention and consideration!
Sincerely.
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